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Abstract. The resulting flow and deformation of a semi-infinite granular material under a rolling, smooth rigid
circular cylinder is investigated using a perturbation method. Based on the double-shearing theory of granular
flow, complete stress and velocity fields, resistance to rolling and the permanent displacement of surface particles
are determined to first order; when the internal friction angle is zero, the solutions reduce to those obtained in the
corresponding analysis for Tresca or von-Mises materials. The solution scheme and the double-shearing model for
granular flow both find their origins in the work of A.J.M. Spencer.
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1. Introduction

Perturbation methods have been used to obtain approximate solutions for a variety of problems
in metal plasticity. One notable example is that originally introduced by A.J.M. Spencer to
solve a series of problems involving Tresca and von-Mises type materials [1]-[5] by perturb-
ation on the zero-order characteristics. This procedure was later adopted by Marshall [6] to
solve the steady state, frictionless rolling contact of a rigid circular cylinder on a semi-infinite
rigid-plastic solid. In this paper, we use Spencer’s perturbation method to solve the analogous
contact problem for an incompressible granular material obeying the Mohr—Coulomb yield
criterion and the kinematic double-shearing theory of Spencer [7]. The resulting stresses
in the material due to gravity are considered small compared with those generated by the
rolling cylinder, and furthermore it is assumed that the rolling velocity is sufficiently slow.
Consequently, both inertial and body forces may be neglected. Under these conditions, the
resistance to rolling and the permanent displacement of particles on the surface of the granular
material are determined. Finally, the aim of this work is to serve as a prelude to the analysis
of the frictional rolling contact problem.

Rolling contact problems involving granular materials have remained largely unsolved
despite their prominence in a host of industrial and engineering procesgem(rigid wheel-
soil interaction systems which are of interest in the area of off-road vehicle engineering [8]).
This is largely due to the complexities of granular behavior which raise more difficulties than
those of solids. In particular, there is a relatively large collection of work on establishing
the stresses and deformations of semi-infinite solid bodies under a rolling rigid cylinder [9,
Chapters 8-9]; these include the important contributions by Collins [10-11] on frictional
contact for rigid-plastic Tresca or von-Mises type materials (which are appropriate for metals,
or, the highly idealized case of a purely cohesive and incompressible soil), and by Hunter [12]
for viscoelastic materials (which are more representative of rubber or polymers). This study
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provides the foundation upon which an equivalent body of knowledge for rolling contact with
granular materials may be established. In this context, the solutions by Marshall [6] for the
corresponding contact problem for a rigid-plastic solid are recovered here as special cases.

2. Plane strain double-shearing theory for incompressible granular materials

The notations adopted in this section follow those in Hill and Wu [13]. When inertial and body
forces are neglected, the equilibrium equations are

00 8ny -0 8(7xy 80yy
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The yield condition is given by the Mohr—Coulomb criterion
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with ¢ and$ being the cohesion and angle of internal friction of the material, and the principal
stresses; (i = 1, 2, 3) are in the order o, > oo > o3. If the new stress variables

o1+ 03 _01—03
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p =
are introduced the Mohr—Coulomb vyield criterion becomes
q = ¢ co98) + p sin(é). 4)

If ¢ is the angle between the major principal stressndx-axis, then the standard rela-
tions between the stress componenis the principal stresses, and the yield condition (4)
lead to the following stress components in the plastic region

01+ 03 01— 03
xx = cogq?2
o > 5 2¢)

= —p+qcog2y) = c cot(§) — g [cosecs) — cos2y)],

oy = 222 - 2% cogzy) (5)
= —p —qco92y) = c cot(§) — g [cosets) + cos2y)],
oy = 2 ; % sin2y) = g sin(2y).

Substituting relations (5) in (1) and making use of the transformations
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we obtain the governing equations fpandy

0 d 0
W _ 0, cot(s)—L _ Zq—w =0. (7)
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Hereo/ds, andd/dsgz are directional derivatives along the so-caltedand g-stress charac-
teristic lines which are, respectively,

dy T 4 dy T 4
a_tan(:/f—z—é) and a_tan<w+4+2>. (8)

Relative to these characteristic lines, the double-shearing theory yields the following gov-
erning equations for the velocity componentsand v in the directions of thex- and -
lines,

v, [aw . aw} .
COS8) % = vy | 2 + SINB)—— | + ¥ SIN(S).
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whereyr; = dv/dt is the partial derivative with respect to timef the angley .
Since

tan2y) = —22

Oxx — Uyy

the termy, in (9) represents the effects of the stress-ratgs/or on the velocity. Thus, before
the velocity field can be solved, the stress-rate field must first be determined. The stress-rate
field, in terms ofg, = dq/dt andy,, must satisfy the equilibrium equations
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These equations are obtained from the partial differentiation of Equations (1) and (5) with
respect to time, and by the transformations given in (6).

In general, for a given set of boundary conditiogsand ¢ are first determined from
Equations (7), followed by, and+, from Equations (10) and, finally, the velocities and
vg from Equations (9).

Assume that the tangent of the surface boundary of the material is inclined at an angle
A with the x-axis. If on part of the boundary, the normal and tangential components of the
traction are given by, and t, then the boundary conditions fqr and v on this part of
boundary are
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0, = ¢ Cot(§) — g[coseqs) + co2y — 20)],

: (12)
T = g Sin(2y — 21).

On this part of the boundary, the traction rades /ot anddt /9t should also be specified and
conditions forg, andy, are

2 —lc05ees) + CON2Y — 20)] + 24 (s — 1) SIN2Y — 20,

(12)
0
a_: = g, SINRY — 24) + 29 (, — ;) CO2Y — 24).

Herei, = dA /0t is the rate of rotation of the boundary tangent at the given point. On that part
of the boundary where velocity components are given,by V. andv, = V|, the conditions
for v, andvg are then

T 8 T 8
VX:COS W_Z_E vy + COS w+z+§ Vg,

. T § . T 6
V}'=S|n W_Z_é Vg + SIN w+z+5 vg.

Alternatively, if the normal component of velocity, is specified, then the corresponding
condition is

(13)

. T 4 . T4
‘/,1—Ua5|n(w—z—§—)\,>+vﬁS|n<w+z+§—)\.). (14)
Across a bounding and/or interfaciatline, the stresses, the stress rate combination

cot(8)q; — 29, and the velocity componen must be continuous; on the other hand, the
stresses, the stress rate combinatioriddet + 29, and the velocity component, must be
continuous across a bounding and/or interfagidine. (The term ‘bounding’ refers to a line
separating the rigid region from the plastic region, while ‘interfacial’ refers to a line separating
two plastic zones.)

3. Spencer’s perturbation method

Suppose we know the solution for a boBly whose boundary at time in parametrical form,
is

x=x"(w, 0, y=y%u1

and that the conditions on the boundary are given fyc®, 90/0t, 37°/0t, V2 and VY. Let

the known solutions for bodB, be denoted by?, v, ¢°, ¥2, v2 andv?. We now attempt to
determine the solution for another boBywhose boundary is slightly different froBy such
that

x=x%u. ) +ex' (. r),  y=y0%u. 1) + ey (. 1),
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wheree is a small parameter. The conditions on the boundafy afe also slightly different
from those 0By, and are given by? + co’, 10+ 7', 302/9t + edo) /3¢, 31°/0t + €37’/ 0t,
V2 + eV, andV? + eV]. Accordingly, we seek solutions f@ of the form

q_q +8q +82q//+ ¢=¢0+8W+82W’+
q,—q,+sq,+szq,”+--- Y=Y +ev +e*Y 4 (15)
Vg = 00+ ev), + &2 + - - vp = Vg +evp + v + - -

We obtain the governing equations for each order by substituting (15) in the governing
Equations (7), (10) and (9), and noting the following relations between the differentiations to
ordere, (Spencer [4])

= seqs) [cos(s ¥+ wo) + sin(yr — w")—}
o g
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s 0 sﬂ
(16)
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+5ead) =5 } ;
5

3
= 2] — ey [tan(a)

and by equating the coefficients of successive powers iof each equation to zero. The
eqguations and boundary conditions for the zeroth order have the same form as in (7), (9)—
(14), with all the variables replaced by the zeroth order terms. Hence the governing equations
for the zeroth order stress, stress-rate and velocity fields are

a0 aq° Y0
cot(8) +2q0 W 0, cot((S)ai Zqo W 0, (17)
a Sﬁ
0V’ 5 00V q9° _
cot(8) +2q, 550 2q oS 0 +21/f, cose¢8) 0 =0,
3q° w aw 3 i (18)
cot(s) —= Kl 2q, é —2y° cosecca)io =0,
asﬂ 8s/3 as

0018)

0 0 0
g = |:8w0 +sm(8)%} + 2 sin(s),
N 0; i & i (19)
0018)—3 = -0 [(;po + sm(8) oy } — 0 sin(8),
S
B

with the boundary conditions



236 A. Tordesillas and J. Shi

o0 = ¢ cot(8) — ¢°[cosees) + cox2y® — 21.9)],

0 0 qj 0 0 (20)
T° =q° Sin(2y° — 21°),
900 .
S = —4/[c0seed) + cos2y® — 291+ 29°(y;) — 47) siny® — 247,
(21)
at° :
8_2 = ¢° sin(2y° — 219 + 2¢°(y° — 1%) cog 2y — 219,
or
8 8
VO = COS(WO - % - 5) w2+ cos<w° + % + 5) v),
(22)

The alternative condition, with the normal component of velocity being specified, is

0_ 0cinfs0_% _8 o0 o (.o T 8§
Vn_vasm<w _2_5_)\)+Uﬁsm<w +Z+5—)x)

Across a boundinga®- (interfacial g%)line, the quantitiesq®, 2, cot(8)g’—
24°y° (cot(8)g? + 24°%°) andv] (v) must be continuous.
The governing equations for the first order stress #élandy" are
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The equations for the first order stress-rate figlendv, are
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(24)
(s 24° Wi _, 8 a 2 5024 20
cof( ) +2q,— - o 0 — 2coset ):/ftTa — 2.cosees) . 750 —2q 8sg
dq° aq°
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ﬁ sy dsg
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for the first order velocity field;, andvg, we have the equations

v’ ,S//O 8100
= sin(§) —
750 [a 5 +sin( ) 950
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950 ds)
. . (25)
v
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/.10 H 0 w/ w/ ! i _
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Let the equation for the boundary Bf be expressed as
y =g%x, 1), (26)
then, noting that the angle of the surface tangent tocthgis may be written as
A=A+ e+ + -,
we have
9 0
tan(2%) = 25 (27)
ox
Hence, for the boundary & expressed in the form
y=2g%x,1) +eg'(x,1), (28)
it follows that
0 1 /
@G0+ en +-) = 28 4228 _tani0) 198
ox ox dax
To ordere, the above yields
/ 0 ag/
A =cog(W0)=. (29)

0x

The first-order conditions on the part of the boundary where the traction and traction rates
are specified, are



238 A. Tordesillas and J. Shi
0, = —¢'[cosees) + cos2y® — 22.%)] +2¢°(y" — &) sin2y® — 1.9,
v = q' siny® — 2% +2¢°(y’ — 1) cos2y® — 219),
% = —g/[cosecs) + cos2y® — 20%)] + 2¢°(y] — 1)) sin2y° — %)
+ 2P — 1)+ ¢’ (Y2 — 2D siny® — 1%

+4g°W0 — 29y — i) cog2y® — 21.9), (30)
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8—2 = g siny° — 2.9 + 2%y — 1) cos2y® — 1°)

+ 202" — 1) + ¢’ (P2 — A1 cog2y® — 1%

+4g°y — A (' — 1) siny? — 210).

If on part of the boundary, the velocity components in thend y-directions are specified,
then the first-order boundary conditions become

/ ’ 0 T 8 / 0 T 8
Vi = v, cos| ¥ 773 + vy COS| ¥ +Z+§

- sin -—— -3 sin —+=11,
W[va (K/f 1 2>+vﬂ (Ip +4+2>}
V! = v/ sin lﬁo—z—é + v, sin ¢0+£+§
v 4 2) F 4" 2

+y' |00 cos wo_l_ﬁ +v9cos lﬁo—i-z—{‘é
« 4 2 p 4 2)|
If the normal component of velocity is given, then we have

. 1) . )
V, = v, sm(wo—%—é—ﬂ)wg sm(t/f0+%+5—xo>

(31)

+ =) [vg cos(wo - % -5 A°> + vg cos(wo + % + g - A°>] . (32

Finally, all of the above first-order equations must satisfy the continuity conditions across
the perturbed, bounding- and interfacial3-lines.

4. Rolling contact of a rigid cylinder on a semi-infinite granular material

As depicted in Figure 1, we consider the fully developed steady-state rolling of a smooth
rigid circular cylinder on the surface of a semi-infinite granular material. The material is
assumed to be incompressible so that the surface behind the cylinder is at the same level
as the undeformed surface in front of the cylinder, and furthermore the volume of ‘bulldozed’
material immediately ahead of the cylinder remains constant. In accordance with Marshall
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(a) Initial stages of rolling
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Figure 1. Proposed origin of the bulldozed region found in the fully developed steady state regirtie if@jial

stages of rolling- cylinder first indents causing material to rise along both sides of the cylinder, then the cylinder
pushes the right-hand material forwards in the direction of travel as it ascends back to the undeformed level;
(b) the fully developed, steady state rolling contaatylinder, at the undeformed level, pushing the established
bulldozed region. The incompressibility condition requires that the volume of material above the undeformed
level (.e. bulldozed material and any raised material from the initial stages) equals the volume displaced below
the undeformed level.

[6], the bulldozed material arises at the initial stages of rolling and leaves behind a permanent
depression on the surface of the material (see, for example, the experiments with hardened
steel balls by Eldridge and Tabor [14], which produced a depression in the roll track situated
at the site of initial contact).

Since the contact is frictionless, a translatory force (which must exceed the rolling resist-
ance) and a torque are applied at the centre of the cylinder to allow both forward translation
as well as rotation of the cylinder. The resulting deformation which occurs in front of the
cylinder centreline is illustrated in Figure 2. Let the time start when the cylinder centreline
coincides with they-axis. At this instant, the portion of the cylinder surface near the origin of
the coordinate systemxQ can be approximated by

2 2

2

X EX EX
e 33
; (33)

T (2R ()

y

whereRr is the radius of the cylinder and= a/R is small witha being the contact width,e.

the distance from the centreline to the point of separation between the cylinder and the free
surface of the material, A'. Thenceforth, the portion of cylinder surface near the surface of the
material is given by

2
y= e(x . ut) (34)
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centreline

Perturbed slipline field

------ Zero order slipline field

Figure 2. Slipline field for the frictionless rolling contact of a cylinder on an incompressible semi-infinite granular
material; in addition to the vertical loddl, a torque and a translatory for¢e F) acts at the centre of the cylinder
which moves forward at speed (A change of coordinate axes fromx@to O’x’y’ applies to all discussions from
Section 4.1 onwards)

whereu is the speed of the cylinder. We attempt to find the stress, stress rates and velocity
fields in the plastic region, as well as the profile of the free surface, by the above perturbation
method.

4.1. THE ZEROTHORDER SOLUTIONS

The zeroth-order solution is obtained by assuming that the corresponding slipline field is a
part of that proposed by Hill [15] for the indentation of a semi-infinite body by a smooth flat
punch whose half-width is equal to the contact widtiAccordingly, the slipline field foBg
consists of two constant stress regions ABC and OAD connected by a spiral fan ADC with
centre at A which lie on the undisturbed surface exactly below the point of separation A’ (see
Figure 2). It follows that

¢°(x,1) =0, 20=22=0

on the surface OAB. The cylinder rolls horizontally, so the zeroth-order boundary conditions
on the contact surface OA are

¥o=0,  y)=0 v -y=0.
On the traction free surface AB, the conditions are

0o cogd) 0

o_ 7 _ _ 0 _
vi=g “1—sin@)’ V=4, =0
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The zeroth-order solutions satisfying these boundary conditions and the continuity conditions
on the bounding°-line ODCB and the interfacig#’-lines AD and AC are (see Spencer [2]):

0 cosd) 0
I

0 T .
v 2’ 1 =¢ 1 — sin(s) a ’
WO =0+ T é
4 2
0 cog$) T 4 0 . (35)
=c———exp|2|—+=—-6)tanid) | = , InACD,
T =cqz SinG) Y Z + 5 n(3) qrrs |
cog$) .
0_0p, O—c—""" ¢ tans)] = ¢%,,, in OAD,
v 4" = ¢ Ty AT O =ql);. |

Y2 =¢=v3=v) =0 inOABCD.
In the region ACD, we use a cylindrical polar coordinate system
x =a+r sin@) + ut, y = —r c090).

Thea-lines in this region are the logarithmic spirals= roexp# tan(s)] with ro being con-
stant for each®-line, and thes®-lines are the radial straight linés= constant. Accordingly,
the differential operators are transformed as follows

cogsd) o 0 0

ro00 99 or

0 _ sin@)> +
9s0 or

o

4.2. THE FIRSTORDER GOVERNING EQUATIONS AND SOLUTIONS

Now we consider the first-order problem for which the domain OAB’C’D’ is a perturbation
of the initial slipline field forBy, OABCD. The origins of the colinear coordinate systﬁrﬁ

for AB’C’ and the polar coordinate system for AC'D’ coincide with point A, and thg-
andsg-axes are parallel to the’- and8°-lines in ABC. The origin of the colinear coordinate
system in OAD’ is at O and the axes are parallel to tffe and g°-lines in OAD. These
coordinate systems translate in thelirection with speed; thus, on the contact surface OA,
we have

, (x — ut)?
’t =
g (x,1) 5
and
)\/:2(x—ul‘), ;:_Z_M.
b b
The first-order boundary conditions on OA' are
, , 2(x —ut) , 2u
= )\‘ = = ——,
w b wl‘ b
W ') sin n+8 W 2u(x — ut)
v, —V —+ )= = —
« P 4 2 b
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Next we set up another Cartesian coordinate systemyOwhich coincides with system
Oxy at the start of the rolling and then translates in.thdirection with speed, hence

x' =x — ut, y =y.

Relative to the moving system @’, the boundary conditions are

’ 2 ’ 2u ’ ’ T 8 2ux’
== Vi=—7 W) sm(z+§> =— (36)

The profile of the traction free surface AB’ is unknown initially and is determined as part
of the solution; let it be given by’ = eg’(x’, ), such that

0G
)\,/ = — = G(X/, t), )\,/ = E = F(x/’ t)’

t
wherefrom the conditions on AB’ may be expressed as
v =G, 1), q =0, Y, = F(x', 1), g, =0. (37)

Note that in consequence of the assumed steady-state conditions, the perturbed slipline
field illustrated in Figure 2 remains unchanged with respect to the moving coordinate system
O’x’y’. Hence, in all the calculations presented hereafter, the perturbed slipline field may
be envisaged as being the same as that shown in Figure 2 with the coordinate system O
changed to Oy’.

With the zeroth-order solutions given in (35), the first-order governing equations for stresses
are

w/

cot(8) +2 Oa = =0,
cot((S)a—qO —24° % —0 inAB'C and O'AD’;

asﬂ 959 Sg

and
, (38)
cot(s) [sm(a)— | co39) 3¢’ } +2 [ aw ) %]
r 20 r 20
cos(a) _g
[ z }:0 in AC'D'.
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The equations for the first-order stress rates are

ad oY/
cots) =1t q’ 5+ 2,09V _ o,
ds0
8 oY/ .
cot(®) =5 U202 _ o in AB'C and O'AD,
dsg dsg
and
9g,  coss) dq! 9y coss) ay (39)
cot(s) | sin() 1 q’ cosd) 94, | | 5,0 sin(e) —-- ‘/ff cosd) 9v,
r 00 r 00
cogs
220 o
dq, d .
cot(8)8 2q0[ Vi + w,} =0 inACD.
The first-order velocity field satisfy
“ g, :
g — ¢/ tan(§) = 0, 30 + ¢/ tan(é) =0 in AB’C’ and O’'AD’;
o Sg
and
40)
. ov.,  cogs) ov/ 1 . (
sin(§)—2% « = —y/tan§) =0 in ACD’
I()8r+ r 0 Py v tane) I '
v, sin(s
B _ v(’){& — ! tan(s) = 0.
or r

4.2.1. First-order stresses
Integrating the Equations (38) and applying the conditions (3;7) we obtain the solutions
for the first-order stresses at a pois?, sﬂ) in region AB'C’

¢ =2 tand) [Gs, 1) — G, D], ¥ = LGy, 1) + Gp, D], (41)

with

ro_ 0 Z . é r_ 0 Z _ é
Xg=a 2sﬂcos(4 2), xR_a+2sacos(4 2).
For simplicity, we approximate the profile of the traction free surface by
y = ellx’® + mx' +nl, (42)

with /, m andn being constant. Then the first-order stresses are

8
' _4140 0, .0 T 0
q q; tané)(sg + s,) COS(4 > )
(43)

8
v =2 (sg — sg) COS(% — 5) + 2la + m.
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Since the stresses must be continuous along the interface between the regions AB’'C’ and
AC'D’, and the first-order stresses from the AB’C’ side are linear functions ,oive seek
solutions in the region AC’D’ of the form

q =L©O)r+ M@®), Y = K@) + N@®).
It follows from (38), that
N@®) =0, L(6) = 6 tan8)q>, (6) K (6).
Equation (38 then yields
M) = A’ exp—29 tan(s)], K(9) = B’ exp—0 tan(3)],

where A’ and B’ are arbitrary constants. Thus the general solutions for the first-order stress
field in region AC'D’ are

q' = 6B’ tan(8) ¢°, () exp—0 tan(8)]r + A’ exp—20 tan(s)],

V' = B’ exp—06 tan(8)]r.

To satisfy the continuity conditions of stressgand along AC’, we first need to find
the equation for this interfacig-line. To orderg, the differential equation for AC’ is

do , ,
r o =¢eyY' =eB exg—0 tan(d)]r;
r

this line is inclined to the traction free surface at angj& — §/2 at point A, so9 — /4 +
8/24+eG(at) whenr — 0with G(a™) = 2la+m. Hence the solution to the above differential
equation is given by

expld tan(s)] = & B'r tan() + exp (% + % + 8G(a+)) tan((S)} ,

or, to ordere,

4 2

T 0§ N , [ (7§
=7 +5+eG@) +eBrexpl— |7+ )@nd|.

Along this interface, we have from the side of region A’B’@g: = —r, sg =0and

)
g=q°+eq = qlo +4e tan(é)q? COS(% — §> Ir,

0
1//=1//0+81ﬁ':%+8|:21 COS(%—§>r+21a+m};

whereas from the side of region AC'D’, we have

8
q=q°+eq = ¢°+4eB tan)q? exp[— (% + 5) tan((S)] r

+ed’ exp|— (5 +9) tand) | - 26 tan®)G ().

Y= 1//0 + ey’ = % +2¢B’ exp[— (% + %) tar1(8):| r+¢l2la+ m).
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Consequently, the continuity conditions lead to

A" = 2[2a+m]q° tan(s) exp[z (% + %) tan(a)] ,

(44)
B’ =1 cos E_§ exp z-|—é tan(§)
B 4 2 4 2 ’
and the first order stresses in region AC’'D’ are
" = 61 ¢° tan(8) cos T 9 exp| 3 £+§—9 tan(d) | r
7 =54, 47 2)P1°P (212
8
+2[2l a + m]q tan(3) exp[Z (% +5- 9) tan(8)} , (45)

Y =1 cos(% — %) exp[(% + % - 9) tan(S)} r.

The constants, m anda are to be determined when the velocity is found in the whole plastic
region.

In the region O’AD’, the general solutions to the Equations (38jor the first-order
stresses are

g =3t@an® )+ 6D Y [1(s9) — J (s)],

1

4qloll
wherel (sg) andJ (s0) are two arbitrary functions. The condition (3&)n the contact surface
wheres = s0 + O(e) yields

8 0
cos 7 + 5 ) Sa
J(sQ) = 1(s9) — 16¢° p .

The continuity conditions on the interfacigtline AD’ will determine the function (s°).
The equation for thgg-line AD’ (inclined to the contact surface at angie/'4 + §/2) is, to
ordere,

o= (Z_° 24 L p 0 tans
__(Z_5>+8{Z+ rexp[<z—i) an()“,

After applying the continuity conditions, we find the first-order stresses in the region O’AD’
to be

q' = 4B'q%, tan(s) exp[(% — g) tan(cS)] (2rg — 53 — s9)

1 T8 T 4

— 0 J— J— p— 0 4 —_— - —
897, tan(é)b cos(4 + 2) Sy +A exp[2<4 2) tan(cS)], (46)

Y’ = 2B’ ex G tan(s) (SO—S0)+£—100$ Z+§ 50
- P77 2 « BT T\ T 2)
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whereA’ and B’ are given in (44) and; = a/[2 coSn/4+ §/2)].

4.2.2. First-order stress rates

Now we consider the first-order stress rate field. Based on Equation (42), wé&ldve) =
0, soy, = 0 on the free surface AB’. The solutions to the Equations {3%) region AB'C’
satisfying the conditions (3§) are

¥/ =q,=0. (47)

Sincey? = ¢° = 0in the whole plastic region, the continuity of the stress rate combination
cot(8)g; + 29, along the interfacialg-lines AC’ and AD’ reduces to the continuity of
cot(8)q, + 2¢%/. Along AC’, this combination is zero from the side of the region AB'C’.

To satisfy the continuity condition, we seek a solution for the first-order stress rates inside the
region AC'D’ of form

q; = —2tan@)q;, ;.
Substituting this in the Equations (33) we obtain

g = PO L 2006} PE)

r r

(48)

whereP (0) is an arbitrary function.
The general solutions to the Equations ¢39for the stress rates in region O’AD’ are

cotd)g, +2¢° ¥, = Q(s),  cotd)g —24° ¥, = S(sD),

with two arbitray functionsQ (s) andS(s2). The continuity of cats)q; + 2¢°y, along AD’
leads toQ(s3) = 0, and the condition (36)on the contact surface yieldgs?) = 842 u/b.
Thus we have the first-order stress rates in the region O’AD’ as follows

2u , 4tand) q° u

V=T g=— (49)

4.2.3. First-order velocity
For the velocity field we work through O’AD’, AC'D’ to AB'C’. Sincev) = vy = 0 in the
whole plastic region, the continuity conditions for the velocity reduces to the continuity of the
first-order velocity. Therefore, along the boundimdine O’D'C’B’, we must havevy = 0
since the material outside the plastic region is stationary.

With v, given in (49), the general solutions to the Equations (40jor the first-order
velocity field are

v, = —2% @n®)s0+ LD, vy = 2% tan(8)s9 + J,(s2).

The conditionv, = 0 on O'D’ (wheresy = 0) leads toJ,(s9) = 0. Then, applying the
condition (363 on the contact surface, we obtalig(sg) = 4u seo{é)sg/b, and therefore the
first-order velocity field in region O’'AD’ is

o, = —2%[tan(6)s2 —2seds)sy], v = 2% tan()s?. (50)
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Substitutingy;, = P(0)/r in the Equations (4@u, we have the following governing
equations for the first-order velocity in the region AC’D’
. dv, cogdadv, ,1 1
sin(§)— + —— —vg— — —P(0) tanid) = 0,
or r a0 ror

v, i
—L SINO) L p9) tans) = 0.
or r r

(51)

Forv, = 0on D'C’' wherer = rp exp(zr/4—58/2+ 0) tan(s)], we seek a partial solution
of the form

, T8
v = H(0) {r —rg exp[(z 3 +9> tan(cS)]} ,

with H (6) being arbitrary. Then Equation (50equires
v, = COseqs) H (0)r — seds) P (0).
The general solutions fatf (9) and P (¢) which satisfy Equation (5@)are

H(0) = Ho,

P(6) = Po exp—6 tan(8)] + 5 Horg COt(S) exp[( 0 + 9) tan((S)] ,

v
4 2
whereHy and Py are arbitrary constants. The continuitywfalong AD’ leads to

4y tan(s) 2urg[1— sin(8)] exp[— (% — 3) tan(®)]
T T b -

Hence we have the velocity components in region AC’D’

Ho =

! = 4use8 2” sedd) {[1 — sin(§)] ex T 9 6 | tan(s
Ua——g qd)r + EFE 0{){ —sin(é) p[—(Z—EJr) n()}

+exp[<% — g + 9) tan(cS)]} , (52)

’ 4% tan(s T 0 6) tans
Uﬁ — Ean(){r—rEeXp[<Z—§+ ) ar( ):|}

In the region AB’C’, the first-order stress rates vanish. So the general solutions to Equa-
tions (40) , are

v, =FsD). vy =G,
with F*(sg) andG*(s?) arbitrary. Applying the condition, = 0 on C'B’ and the condition
of continuity of v/, across thes-line AC’, we obtain the first-order velocity components in
this region

/ u u (7 /
v, = 45 seqs)sy + ZErE seqsd)V, vy =0, (53)
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with

V= exp[% tan(é)] +[1—sin()] exp[—% tan((S)] )

5. Results and discussion

Relative to the coordinate systemxQy’, the free-surface profile remains unchanged, hence
the relative movement of particles is directed along this surface. Accordingly, the slope of the
free-surface profile may be expressed as follows

/

dy’ , v, v,
A S S A 1) (54)
dx v —u u—ev, u

where

2" seqs) [tan( = - 2 Nasinf(E 8 v
ZSGC()[an(z—5>(a—x)+sm(z—E)rE ]

Substituting this in (54), integrating it and making use of the conditionythat ea?/b when
x’ = a, we obtain the expression for the profile of the traction free surface, to erdes
follows

, 1 T 8 2 -~ Y 8 ,
Y=ey seqs) tan(z — 5) {x — Z[a +rgV cos(z — 5)] X'+ No}, (55)

where

No = a? 1+cot<£—é [V + cog8)]
22 ‘

By comparing the two expressions in (42) and (55) for the free surface, we get

1 T 4 1 T 4 -
= 5 seqs) tan (Z — 5) , m= 3 seqd) [2tan<z — 5) + V} a. (56)

Substituting these in (44), and combining the results with ((46)d (30}, we obtain the
following expression for the normal pressure, on the contact surface

—0, = —(or?—i-eo,;)

= c cot(§)[Qp — 1] + zecQo{ZQl(a —x') —2x' — seds)Val, (57)
with

_1+5sin(3)

%~ 1 sin®)

explr tand)], Q1 = seqs) exp[% tan(cS)] .
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Denoting the vertical load by and the rolling resistance by (the minimum value
required for the translatory force to cause forward movement of the cylinder), we have

W:—/aands COS(A):—/ o, dx’,
0 0 (58)

F = —/ ’ 0, ds sin(A) = —/ o, tan(A)dx’,
0 0

wheres, is the arc length of the contact surface and the angle between the contact surface
and thex’ axis. Substituting (57) in (58)and integrating, we get

2¢ ¢ Qo{Q1 — 1 — seqd)V}a?

W = ¢ cot(8)[ Qo — 1la + -

According to the definition of = a/R andb = 2Re = 2a, this equation can be expressed as

¢ QolQ1 — 1 —seds)V}a?

W = ¢ cot(8)[ Qo — 1la + I

(59)

For a given vertical loadV, the contact widtls may then be determined from this equation.
With the approximation of’ = x'?/2R, tan(») = x'/R, the rolling resistancé is obtained
by integrating (58) as follows

2 .3
F = 1c cot(8)[Qo — 1]% +3c 00{01 -2~ %’Se@)V}%- (60)

Once the contact width is established, (60) can be used to calculate the rolling resistance. In
addition, withb = 24, the profile of traction free surface is given by (55).

The passage of the cylinder leads to a permanent horizontal displacanoerthe surface
of the granular material in the direction of motion of the cylinder, namely

na / na .y /
Jo v dx e fy vt

A= (61)
u u
where
T $ b4
na = {1+ tan(z + 5) exp[z tan(cS)” a (62)

is the length of O’B. Substituting the corresponding expressions’fdior the contact and
free surfaces in the above, we find that

A= seqs) (14 11— sin) tar? (Z 4+ 2 63
_2Rsec(){ + [1 —sin(d)] ta (4+2>}. (63)
Because of the steady-state and incompressibility conditions assumed for the fully developed
flow regime, the surface levels of the material both ahead and behind the rolling cylinder are
the same. Therefore, the permanent vertical displacements which are considered to occur at the
initial stages of loading are outside the scope of this model (recall that the difference between
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§—-0 6=10 §=120 §=230

/R 0.20

range of validity

l

2 4 6 8 10
WicR

Figure 3. Contact widtha/R as a function of vertical loa®¥ /cR for various values of internal friction angée
Note that the horizontal dashed line indicates the upper limit of the range of vak¢itya/R) < 0-1 (e.g, for
3 = 30°, range of validity lies in 0< W/cR < 2.7871)

the initial stages of loading and the fully developed flow regime is illustrated in Figure 1).

Moreover, in consequence of the steady-state condition, the contact width, the volume of

bulldozed material, and the free-surface profile are independent of the speed of the cylinder.
In the following, we summarise some trends which arise from changes in material property

via the parametet. Figures 3, 4 and 5 present, respectively, the variations of the contact width

a/R, permanent horizontal displacemefi/ R, and coefficient of rolling resistancg/ W,

with the vertical loadW for several values of internal friction angle of the matesidBearing

in mind that the perturbation approximation is generally applicable wvhena/R <« 1.0

(e.g, ¢ < 0-1), Figure 3 indicates that both the range of validity and the accuracy of the

perturbation solutions increase with increasihd-or a fixed loadw, Figure 3 shows a de-

crease in the contact width with increasihidJnder these conditions, one finds a concomitant

decrease in the overall plastic region based on consideration of the location of the perturbed

boundinge-line OD’C’B’ which may be defined as follows

b —0 6=10 £=20 =140
04
o 00 o
&=
010 02 -
e 230
sy
S )
0 3 3 I3 §

10 0 3 4 6 8 10
W/eR WicR

Figure 4. Permanent surface displaceméntR as a Figure 5. Coefficient of rolling resistancé/W as a
function of vertical loadW/cR for various values of function of vertical loadW/cR for various values of
internal friction angles. internal friction angles.
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Table 1. Perturbed and zeroth-order solutions: the maximum horizontal extent of the slipline field (columns 3-4) and
the contact pressures (columns 5-7) for varying values of internal friction arfigie /cR = 0-4.

8§ a/R (length0’B’)/R  (lengthO’B)/R  —a?/c —(09+¢0))/c —(ea)))o?
0 008026873 Q1544146851 1605954924 84390617 H8326062 13123026387
10 004910154 Q1210818308 1419629656 B4492612 814638326 02379204586

20 002741621 @9287495284 (1179176264 18347117 14899098 001650196807
30 001340689 @6830379235 0907148111 30396278 28354152 001009344349
40 000533848 @4658427028 627183123 78131142 748276362 000511833900
50 000150164 @2761509285  ©365851105 26681763 266375832 (000189571214

for OD’,

2 8 Z tan($
y/: —tan(n 8))6/ +Se(( ) eXp[Z ar( )] /2

273 2R co% (Z +3)

r=rp eXp{(e — ) tan[8 - % seds) exp(% tan(S))]} for D'C’,
s 64)
r o z N é Se(((S) tan(Z - %) 2 N 2 (
vy =(x xC,)tan<4 2>—|— 5R CO§(%_%)()C X'¢r)

_aseqs)2tan(f -3 +V

2R cog (2 —9)

(x"—xo) +yo forCB’,

where the polar coordinate systemd) with

2
a

I = sin(é "= — —r cog#

X' =a+rsing), Y =5 " S6)

is used in the description of D'C’, while*§, 6p/) and (., y.,) represent the location of the
points D’ and C’, respectively (see Figure 2). The decrease in the overall extent of the slipline
region with increasing is evident in the values of the length of O'B.€., the maximum
horizontal extent of the perturbed slipline field) as listed in column 3 of Table WfarR =

0-4.

Comparisons between the zeroth-order and the perturbed solutions may be made for the
overall dimensions of the slipline field and the contact pressures. It is evident from the values
of O’B in column 4 of Table 1 that the curvature of the cylinder effectively reduces the slipline
field; indeed an examination of the boundimgines O'D’'C’B’ (Equation (64)) and the inter-
facial 8-lines AD’ and AC’ (in Section 4.2.1) indicates that the greater the cylinder’s radius
of curvature i.e.the smaller the cylinder radiug), the smaller the overall slipline field will be.

The zero-order contact pressure (constant), and the mean of the contact pressure distribution
to first order (linear with respect toin Equation (57)) are given in columns 5 and 6 of Table 1.

It can be seen from column 7 that for a fixed load, the relative difference between the zero-
order contact pressure and the first-order mean contact pressure decreases with intreasing
This trend is consistent with Figure 3 in which, for a fixed load, the perturbation parameter
¢(= a/R) decreases with increasiig

Finally, we note that the formulation in this paper is not suitable for purely frictional ma-
terials,i.e. ¢ = 0; this is conveyed in Equations (57)—(60) which show that the stresses in the
material vanish for the cage= 0. On the other hand, in the limit— 0, which corresponds
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to purely cohesive materials, the expressions for the contact pressure, theFf@noe®’, and

the permanent horizontal displacement tend to those values given in Marshall [6] for Tresca
or von-Mises materials. Although a comparison with experimental data is required to assess
the validity of this model properly, the above results do show sensible trends which lend merit
to the future extension of this work to the case of frictional contact.
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