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Abstract. The resulting flow and deformation of a semi-infinite granular material under a rolling, smooth rigid
circular cylinder is investigated using a perturbation method. Based on the double-shearing theory of granular
flow, complete stress and velocity fields, resistance to rolling and the permanent displacement of surface particles
are determined to first order; when the internal friction angle is zero, the solutions reduce to those obtained in the
corresponding analysis for Tresca or von-Mises materials. The solution scheme and the double-shearing model for
granular flow both find their origins in the work of A.J.M. Spencer.
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1. Introduction

Perturbation methods have been used to obtain approximate solutions for a variety of problems
in metal plasticity. One notable example is that originally introduced by A.J.M. Spencer to
solve a series of problems involving Tresca and von-Mises type materials [1]–[5] by perturb-
ation on the zero-order characteristics. This procedure was later adopted by Marshall [6] to
solve the steady state, frictionless rolling contact of a rigid circular cylinder on a semi-infinite
rigid-plastic solid. In this paper, we use Spencer’s perturbation method to solve the analogous
contact problem for an incompressible granular material obeying the Mohr–Coulomb yield
criterion and the kinematic double-shearing theory of Spencer [7]. The resulting stresses
in the material due to gravity are considered small compared with those generated by the
rolling cylinder, and furthermore it is assumed that the rolling velocity is sufficiently slow.
Consequently, both inertial and body forces may be neglected. Under these conditions, the
resistance to rolling and the permanent displacement of particles on the surface of the granular
material are determined. Finally, the aim of this work is to serve as a prelude to the analysis
of the frictional rolling contact problem.

Rolling contact problems involving granular materials have remained largely unsolved
despite their prominence in a host of industrial and engineering processes (e.g., in rigid wheel-
soil interaction systems which are of interest in the area of off-road vehicle engineering [8]).
This is largely due to the complexities of granular behavior which raise more difficulties than
those of solids. In particular, there is a relatively large collection of work on establishing
the stresses and deformations of semi-infinite solid bodies under a rolling rigid cylinder [9,
Chapters 8–9]; these include the important contributions by Collins [10–11] on frictional
contact for rigid-plastic Tresca or von-Mises type materials (which are appropriate for metals,
or, the highly idealized case of a purely cohesive and incompressible soil), and by Hunter [12]
for viscoelastic materials (which are more representative of rubber or polymers). This study
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provides the foundation upon which an equivalent body of knowledge for rolling contact with
granular materials may be established. In this context, the solutions by Marshall [6] for the
corresponding contact problem for a rigid-plastic solid are recovered here as special cases.

2. Plane strain double-shearing theory for incompressible granular materials

The notations adopted in this section follow those in Hill and Wu [13]. When inertial and body
forces are neglected, the equilibrium equations are

∂σxx

∂x
+ ∂σxy

∂y
= 0,

∂σxy

∂x
+ ∂σyy

∂y
= 0. (1)

The yield condition is given by the Mohr–Coulomb criterion

σ1− σ3

2
= c cos(δ)− σ1+ σ3

2
sin(δ), (2)

with c andδ being the cohesion and angle of internal friction of the material, and the principal
stressesσi (i = 1,2,3) are in the order ofσ1 > σ2 > σ3. If the new stress variables

p = −σ1+ σ3

2
, q = σ1− σ3

2
, (3)

are introduced the Mohr–Coulomb yield criterion becomes

q = c cos(δ)+ p sin(δ). (4)

If ψ is the angle between the major principal stressσ1 andx-axis, then the standard rela-
tions between the stress componentsσij , the principal stressesσi, and the yield condition (4)
lead to the following stress components in the plastic region

σxx = σ1+ σ3

2
+ σ1− σ3

2
cos(2ψ)

= −p + q cos(2ψ) = c cot(δ)− q [cosec(δ)− cos(2ψ)],
σyy = σ1+ σ3

2
− σ1− σ3

2
cos(2ψ)

= −p − q cos(2ψ) = c cot(δ)− q [cosec(δ)+ cos(2ψ)],
σxy = σ1− σ3

2
sin(2ψ) = q sin(2ψ).

(5)

Substituting relations (5) in (1) and making use of the transformations

cos(δ)
∂

∂x
= sin

(
ψ + π

4
+ δ

2

)
∂

∂sα
− sin

(
ψ − π

4
− δ

2

)
∂

∂sβ
,

cos(δ)
∂

∂y
= − cos

(
ψ + π

4
+ δ

2

)
∂

∂sα
+ cos

(
ψ − π

4
− δ

2

)
∂

∂sβ
,

(6)
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we obtain the governing equations forq andψ

cot(δ)
∂q

∂sα
+ 2q

∂ψ

∂sα
= 0, cot(δ)

∂q

∂sβ
− 2q

∂ψ

∂sβ
= 0. (7)

Here∂/∂sα and∂/∂sβ are directional derivatives along the so-calledα- andβ-stress charac-
teristic lines which are, respectively,

dy

dx
= tan

(
ψ − π

4
− δ

2

)
and

dy

dx
= tan

(
ψ + π

4
+ δ

2

)
. (8)

Relative to these characteristic lines, the double-shearing theory yields the following gov-
erning equations for the velocity componentsvα andvβ in the directions of theα- andβ-
lines,

cos(δ)
∂vα

∂sα
= vβ

[
∂ψ

∂sα
+ sin(δ)

∂ψ

∂sβ

]
+ ψt sin(δ),

cos(δ)
∂vβ

∂sβ
= −vα

[
∂ψ

∂sβ
+ sin(δ)

∂ψ

∂sα

]
− ψt sin(δ),

(9)

whereψt = ∂ψ/∂t is the partial derivative with respect to timet of the angleψ .
Since

tan(2ψ) = 2σxy
σxx − σyy ,

the termψt in (9) represents the effects of the stress-rates∂σij/∂t on the velocity. Thus, before
the velocity field can be solved, the stress-rate field must first be determined. The stress-rate
field, in terms ofqt = ∂q/∂t andψt , must satisfy the equilibrium equations

cot(δ)
∂qt

∂sα
+ 2qt

∂ψ

∂sα
+ 2q

∂ψt

∂sα
+ 2ψtcosec(δ)

∂q

∂sβ
= 0,

cot(δ)
∂qt

∂sβ
− 2qt

∂ψ

∂sβ
− 2q

∂ψt

∂sβ
− 2ψtcosec(δ)

∂q

∂sα
= 0.

(10)

These equations are obtained from the partial differentiation of Equations (1) and (5) with
respect to timet , and by the transformations given in (6).

In general, for a given set of boundary conditions,q andψ are first determined from
Equations (7), followed byqt andψt from Equations (10) and, finally, the velocitiesvα and
vβ from Equations (9).

Assume that the tangent of the surface boundary of the material is inclined at an angle
λ with the x-axis. If on part of the boundary, the normal and tangential components of the
traction are given byσn and τ , then the boundary conditions forq andψ on this part of
boundary are
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σn = c cot(δ)− q[cosec(δ)+ cos(2ψ − 2λ)],
τ = q sin(2ψ − 2λ).

(11)

On this part of the boundary, the traction rates∂σn/∂t and∂τ/∂t should also be specified and
conditions forqt andψt are

∂σn

∂t
= −qt [cosec(δ)+ cos(2ψ − 2λ)] + 2q(ψt − λt) sin(2ψ − 2λ),

∂τ

∂t
= qt sin(2ψ − 2λ)+ 2q(ψt − λt) cos(2ψ − 2λ).

(12)

Hereλt = ∂λ/∂t is the rate of rotation of the boundary tangent at the given point. On that part
of the boundary where velocity components are given byvx = Vx andvy = Vy, the conditions
for vα andvβ are then

Vx = cos

(
ψ − π

4
− δ

2

)
vα + cos

(
ψ + π

4
+ δ

2

)
vβ,

Vy = sin

(
ψ − π

4
− δ

2

)
vα + sin

(
ψ + π

4
+ δ

2

)
vβ.

(13)

Alternatively, if the normal component of velocityVn is specified, then the corresponding
condition is

Vn = vα sin

(
ψ − π

4
− δ

2
− λ

)
+ vβ sin

(
ψ + π

4
+ δ

2
− λ

)
. (14)

Across a bounding and/or interfacialα-line, the stresses, the stress rate combination
cot(δ)qt − 2qψt , and the velocity componentvβ must be continuous; on the other hand, the
stresses, the stress rate combination cot(δ)qt + 2qψt and the velocity componentvα must be
continuous across a bounding and/or interfacialβ-line. (The term ‘bounding’ refers to a line
separating the rigid region from the plastic region, while ‘interfacial’ refers to a line separating
two plastic zones.)

3. Spencer’s perturbation method

Suppose we know the solution for a bodyB0 whose boundary at timet , in parametrical form,
is

x = x0(µ, t), y = y0(µ, t)

and that the conditions on the boundary are given byσ 0
n , τ 0, ∂σ 0

n /∂t , ∂τ
0/∂t , V 0

x andV 0
y . Let

the known solutions for bodyB0 be denoted byq0, ψ0, q0
t , ψ

0
t , v0

α andv0
β . We now attempt to

determine the solution for another bodyB whose boundary is slightly different fromB0 such
that

x = x0(µ, t)+ εx′(µ, t), y = y0(µ, t)+ εy′(µ, t),
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whereε is a small parameter. The conditions on the boundary ofB are also slightly different
from those ofB0, and are given byσ 0

n + εσ ′n, τ 0+ ετ ′, ∂σ 0
n /∂t + ε∂σ ′n/∂t , ∂τ 0/∂t + ε∂τ ′/∂t ,

V 0
x + εV ′x andV 0

y + εV ′y. Accordingly, we seek solutions forB of the form

q = q0 + εq ′ + ε2q ′′ + · · · ψ = ψ0+ εψ ′ + ε2ψ ′′ + · · ·
qt = q0

t + εq ′t + ε2q ′′t + · · · ψt = ψ0
t + εψ ′t + ε2ψ ′′t + · · ·

vα = v0
α + εv′α + ε2v′′α + · · · vβ = v0

β + εv′β + ε2v′′β + · · · .
(15)

We obtain the governing equations for each order by substituting (15) in the governing
Equations (7), (10) and (9), and noting the following relations between the differentiations to
orderε, (Spencer [4])

∂

∂sα
= sec(δ)

[
cos(δ − ψ + ψ0)

∂

∂s0
α

+ sin(ψ − ψ0)
∂

∂s0
β

]

= ∂

∂s0
α

+ εψ ′
[

tan(δ)
∂

∂s0
α

+ sec(δ)
∂

∂s0
β

]
,

∂

∂sβ
= sec(δ)

[
− sin(ψ − ψ0)

∂

∂s0
α

+ cos(δ + ψ − ψ0)
∂

∂s0
β

]

= ∂

∂s0
β

− εψ ′
[

tan(δ)
∂

∂s0
β

+ sec(δ)
∂

∂s0
α

]
,

(16)

and by equating the coefficients of successive powers ofε in each equation to zero. The
equations and boundary conditions for the zeroth order have the same form as in (7), (9)–
(14), with all the variables replaced by the zeroth order terms. Hence the governing equations
for the zeroth order stress, stress-rate and velocity fields are

cot(δ)
∂q0

∂s0
α

+ 2q0∂ψ
0

∂s0
α

= 0, cot(δ)
∂q0

∂s0
β

− 2q0∂ψ
0

∂s0
β

= 0, (17)

cot(δ)
∂q0

t

∂s0
α

+ 2q0
t

∂ψ0

∂s0
α

+ 2q0∂ψ
0
t

∂s0
α

+ 2ψ0
t cosec(δ)

∂q0

∂s0
β

= 0,

cot(δ)
∂q0

t

∂s0
β

− 2q0
t

∂ψ0

∂s0
β

− 2q0∂ψ
0
t

∂s0
β

− 2ψ0
t cosec(δ)

∂q0

∂s0
α

= 0,

(18)

cos(δ)
∂v0

α

∂s0
α

= v0
β

[
∂ψ0

∂s0
α

+ sin(δ)
∂ψ0

∂s0
β

]
+ ψ0

t sin(δ),

cos(δ)
∂v0

β

∂s0
β

= −v0
α

[
∂ψ0

∂s0
β

+ sin(δ)
∂ψ0

∂s0
α

]
− ψ0

t sin(δ),

(19)

with the boundary conditions
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σ 0
n = c cot(δ)− q0[cosec(δ)+ cos(2ψ0 − 2λ0)],
τ 0 = q0 sin(2ψ0 − 2λ0),

(20)

∂σ 0
n

∂t
= −q0

t [cosec(δ)+ cos(2ψ0− 2λ0)] + 2q0(ψ0
t − λ0

t ) sin(2ψ0− 2λ0),

∂τ 0

∂t
= q0

t sin(2ψ0 − 2λ0)+ 2q0(ψ0
t − λ0

t ) cos(2ψ0− 2λ0),

(21)

or

V 0
x = cos

(
ψ0− π

4
− δ

2

)
v0
α + cos

(
ψ0+ π

4
+ δ

2

)
v0
β,

V 0
y = sin

(
ψ0− π

4
− δ

2

)
v0
α + sin

(
ψ0 + π

4
+ δ

2

)
v0
β .

(22)

The alternative condition, with the normal component of velocity being specified, is

V 0
n = v0

α sin

(
ψ0− π

4
− δ

2
− λ0

)
+ v0

β sin

(
ψ0+ π

4
+ δ

2
− λ0

)
.

Across a boundingα0- (interfacial β0-)line, the quantities q0, ψ0, cot(δ)q0
t −

2q0ψ0 (cot(δ)q0
t + 2q0ψ0) andv0

β (v0
α) must be continuous.

The governing equations for the first order stress fieldq ′ andψ ′ are

cot(δ)
∂q ′

∂s0
α

+ 2q0∂ψ
′

∂s0
α

+ 2q ′
∂ψ0

∂s0
α

+ 2ψ ′ cosec(δ)
∂q0

∂s0
β

= 0,

cot(δ)
∂q ′

∂s0
β

− 2q0∂ψ
′

∂s0
β

− 2q ′
∂ψ0

∂s0
β

− 2ψ ′ cosec(δ)
∂q0

∂s0
α

= 0.

(23)

The equations for the first order stress-rate fieldq ′t andψ ′t are

cot(δ)
∂q ′t
∂s0
α

+ 2q ′t
∂ψ0

∂s0
α

+ 2q0∂ψ
′
t

∂s0
α

+ 2 cosec(δ)ψ ′t
∂q0

∂s0
β

+ 2 cosec(δ)ψ0
t

∂q ′

∂s0
β

+ 2q ′
∂ψ0

t

∂s0
α

+2q0
t

∂ψ ′

∂s0
α

+ 2 sec(δ)ψ ′
[

cot(δ)
∂q0

t

∂s0
β

+ 2ψ0
t

(
∂q0

∂s0
β

+ cosec(δ)
∂q0

∂s0
α

)]
= 0,

cot(δ)
∂q ′t
∂s0
β

+ 2q ′t
∂ψ0

∂s0
β

− 2q0∂ψ
′
t

∂s0
β

− 2 cosec(δ)ψ ′t
∂q0

∂s0
α

− 2 cosec(δ)ψ0
t

∂q ′

∂s0
α

− 2q ′
∂ψ0

t

∂s0
β

−2q0
t

∂ψ ′

∂s0
β

− 2 sec(δ)ψ ′
[

cot(δ)
∂q0

t

∂s0
α

+ 2ψ0
t

(
∂q0

∂s0
α

+ cosec(δ)
∂q0

∂s0
β

)]
= 0;

(24)
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for the first order velocity fieldv′α andv′β , we have the equations

cos(δ)
∂v′α
∂s0
α

− v′β
[
∂ψ0

∂s0
α

+ sin(δ)
∂ψ0

∂s0
β

]

+ψ ′ sec(δ)

{
cos(δ)

∂v0
α

∂s0
β

− v0
β

[
cos(2δ)

∂ψ0

∂s0
β

− sin(δ)
∂ψ0

∂s0
α

]}

+ψ ′ψ0
t tan(δ) sin(δ)− v0

β

[
∂ψ ′

∂s0
α

+ sin(δ)
∂ψ ′

∂s0
β

]
− ψ ′t sin(δ) = 0,

cos(δ)
∂v′β
∂s0
β

+ v′α
[
∂ψ0

∂s0
β

+ sin(δ)
∂ψ0

∂s0
α

]

−ψ ′ sec(δ)

{
cos(δ)

∂v0
β

∂s0
α

+ v0
α

[
cos(2δ)

∂ψ0

∂s0
α

− sin(δ)
∂ψ0

∂s0
β

]}

+ψ ′ψ0
t tan(δ) sin(δ)+ v0

α

[
∂ψ ′

∂s0
β

+ sin(δ)
∂ψ ′

∂s0
α

]
+ ψ ′t sin(δ) = 0.

(25)

Let the equation for the boundary ofB0 be expressed as

y = g0(x, t), (26)

then, noting that the angle of the surface tangent to thex-axis may be written as

λ = λ0+ ελ′ + ε2λ′′ + · · · ,
we have

tan(λ0) = ∂g0

∂x
. (27)

Hence, for the boundary ofB expressed in the form

y = g0(x, t) + εg′(x, t), (28)

it follows that

tan(λ0+ ελ′ + · · ·) = ∂g0

∂x
+ ε ∂g

′

∂x
= tan(λ0)+ ε ∂g

′

∂x
.

To orderε, the above yields

λ′ = cos2(λ0)
∂g′

∂x
. (29)

The first-order conditions on the part of the boundary where the traction and traction rates
are specified, are
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σ ′n = −q ′[cosec(δ)+ cos(2ψ0 − 2λ0)] + 2q0(ψ ′ − λ′) sin(2ψ0 − λ0),

τ ′ = q ′ sin(2ψ0 − 2λ0)+ 2q0(ψ ′ − λ′) cos(2ψ0− 2λ0),

∂σ ′n
∂t
= −q ′t [cosec(δ)+ cos(2ψ0 − 2λ0)] + 2q0(ψ ′t − λ′t ) sin(2ψ0 − λ0)

+ 2[q0
t (ψ

′ − λ′)+ q ′(ψ0
t − λ0

t )] sin(2ψ0 − λ0)

+ 4q0(ψ0
t − λ0

t )(ψ
′ − λ′) cos(2ψ0− 2λ0),

∂τ ′

∂t
= q ′t sin(2ψ0− 2λ0)+ 2q0(ψ ′t − λ′t ) cos(2ψ0− λ0)

+ 2[q0
t (ψ

′ − λ′)+ q ′(ψ0
t − λ0

t )] cos(2ψ0− λ0)

+ 4q0(ψ0
t − λ0

t )(ψ
′ − λ′) sin(2ψ0− 2λ0).

(30)

If on part of the boundary, the velocity components in thex- andy-directions are specified,
then the first-order boundary conditions become

V ′x = v′α cos

(
ψ0− π

4
− δ

2

)
+ v′β cos

(
ψ0+ π

4
+ δ

2

)
−ψ ′

[
v0
α sin

(
ψ0− π

4
− δ

2

)
+ v0

β sin

(
ψ0+ π

4
+ δ

2

)]
,

V ′y = v′α sin

(
ψ0− π

4
− δ

2

)
+ v′β sin

(
ψ0+ π

4
+ δ

2

)
+ψ ′

[
v0
α cos

(
ψ0− π

4
− δ

2

)
+ v0

β cos

(
ψ0+ π

4
+ δ

2

)]
.

(31)

If the normal component of velocity is given, then we have

V ′n = v′α sin

(
ψ0 − π

4
− δ

2
− λ0

)
+ v′β sin

(
ψ0+ π

4
+ δ

2
− λ0

)

+(ψ ′ − λ′)
[
v0
α cos

(
ψ0− π

4
− δ

2
− λ0

)
+ v0

β cos

(
ψ0+ π

4
+ δ

2
− λ0

)]
. (32)

Finally, all of the above first-order equations must satisfy the continuity conditions across
the perturbed, boundingα- and interfacialβ-lines.

4. Rolling contact of a rigid cylinder on a semi-infinite granular material

As depicted in Figure 1, we consider the fully developed steady-state rolling of a smooth
rigid circular cylinder on the surface of a semi-infinite granular material. The material is
assumed to be incompressible so that the surface behind the cylinder is at the same level
as the undeformed surface in front of the cylinder, and furthermore the volume of ‘bulldozed’
material immediately ahead of the cylinder remains constant. In accordance with Marshall
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Figure 1. Proposed origin of the bulldozed region found in the fully developed steady state regime: (a)the initial
stages of rolling– cylinder first indents causing material to rise along both sides of the cylinder, then the cylinder
pushes the right-hand material forwards in the direction of travel as it ascends back to the undeformed level;
(b) the fully developed, steady state rolling contact– cylinder, at the undeformed level, pushing the established
bulldozed region. The incompressibility condition requires that the volume of material above the undeformed
level (i.e. bulldozed material and any raised material from the initial stages) equals the volume displaced below
the undeformed level.

[6], the bulldozed material arises at the initial stages of rolling and leaves behind a permanent
depression on the surface of the material (see, for example, the experiments with hardened
steel balls by Eldridge and Tabor [14], which produced a depression in the roll track situated
at the site of initial contact).

Since the contact is frictionless, a translatory force (which must exceed the rolling resist-
ance) and a torque are applied at the centre of the cylinder to allow both forward translation
as well as rotation of the cylinder. The resulting deformation which occurs in front of the
cylinder centreline is illustrated in Figure 2. Let the time start when the cylinder centreline
coincides with they-axis. At this instant, the portion of the cylinder surface near the origin of
the coordinate system Oxy can be approximated by

y = x2

(2R)
= εx2

(2a)
≡ εx2

b
, (33)

whereR is the radius of the cylinder andε = a/R is small witha being the contact width,i.e.
the distance from the centreline to the point of separation between the cylinder and the free
surface of the material, A’. Thenceforth, the portion of cylinder surface near the surface of the
material is given by

y = ε(x − ut)2
b,

(34)
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Figure 2. Slipline field for the frictionless rolling contact of a cylinder on an incompressible semi-infinite granular
material; in addition to the vertical loadW , a torque and a translatory force(> F) acts at the centre of the cylinder
which moves forward at speedu. (A change of coordinate axes from Oxy to O’x′y′ applies to all discussions from
Section 4.1 onwards)

whereu is the speed of the cylinder. We attempt to find the stress, stress rates and velocity
fields in the plastic region, as well as the profile of the free surface, by the above perturbation
method.

4.1. THE ZEROTH-ORDER SOLUTIONS

The zeroth-order solution is obtained by assuming that the corresponding slipline field is a
part of that proposed by Hill [15] for the indentation of a semi-infinite body by a smooth flat
punch whose half-width is equal to the contact widtha. Accordingly, the slipline field forB0

consists of two constant stress regions ABC and OAD connected by a spiral fan ADC with
centre at A which lie on the undisturbed surface exactly below the point of separation A’ (see
Figure 2). It follows that

g0(x, t) = 0, λ0 = λ0
t = 0

on the surface OAB. The cylinder rolls horizontally, so the zeroth-order boundary conditions
on the contact surface OA are

ψ0 = 0, ψ0
t = 0, v0

α − v0
β = 0.

On the traction free surface AB, the conditions are

ψ0 = π

2
, q0 = c cos(δ)

1− sin(δ)
, ψ0

t = q0
t = 0.
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The zeroth-order solutions satisfying these boundary conditions and the continuity conditions
on the boundingα0-line ODCB and the interfacialβ0-lines AD and AC are (see Spencer [2]):

ψ0 = π

2
, q0 = c cos(δ)

1− sin(δ)
≡ q0

I , in ABC,

ψ0 = θ + π
4
− δ

2
,

q0 = c cos(δ)

1− sin(δ)
exp

[
2

(
π

4
+ δ

2
− θ

)
tan(δ)

]
≡ q0

II , in ACD,

ψ0 = 0, q0 = c cos(δ)

1− sin(δ)
exp[π tan(δ)] ≡ q0

III , in OAD,

ψ0
t = q0

t = v0
α = v0

β = 0 in OABCD.

(35)

In the region ACD, we use a cylindrical polar coordinate system

x = a + r sin(θ)+ ut, y = −r cos(θ).

Theα0-lines in this region are the logarithmic spiralsr = r0 exp[θ tan(δ)] with r0 being con-
stant for eachα0-line, and theβ0-lines are the radial straight linesθ = constant. Accordingly,
the differential operators are transformed as follows

∂

∂s0
α

= sin(δ)
∂

∂r
+ cos(δ)

r

∂

∂θ
,

∂

∂s0
β

= − ∂
∂r
.

4.2. THE FIRST-ORDER GOVERNING EQUATIONS AND SOLUTIONS

Now we consider the first-order problem for which the domain OA’B’C’D’ is a perturbation
of the initial slipline field forB0, OABCD. The origins of the colinear coordinate systems0

αs
0
β

for A’B’C’ and the polar coordinate system for A’C’D’ coincide with point A’, and thes0
α-

ands0
β -axes are parallel to theα0- andβ0-lines in ABC. The origin of the colinear coordinate

system in OA’D’ is at O and the axes are parallel to theα0- andβ0-lines in OAD. These
coordinate systems translate in thex-direction with speedu; thus, on the contact surface OA’,
we have

g′(x, t) = (x − ut)2
b

,

and

λ′ = 2(x − ut)
b

, λ′t = −
2u

b
.

The first-order boundary conditions on OA’ are

ψ ′ = λ′ = 2(x − ut)
b

, ψ ′t = −
2u

b
,

(v′α − v′β) sin

(
π

4
+ δ

2

)
= uλ′ = 2u(x − ut)

b
.
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Next we set up another Cartesian coordinate system O’x′y′ which coincides with system
Oxy at the start of the rolling and then translates in thex-direction with speedu, hence

x′ = x − ut, y′ = y.

Relative to the moving system O’x′y′, the boundary conditions are

ψ ′ = 2x′

b
, ψ ′t = −

2u

b
, (v′α − v′β) sin

(
π

4
+ δ

2

)
= 2ux′

b
. (36)

The profile of the traction free surface A’B’ is unknown initially and is determined as part
of the solution; let it be given byy′ = εg′(x′, t), such that

λ′ = ∂g′

∂x′
≡ G(x′, t), λ′t =

∂G

∂t
≡ F(x′, t),

wherefrom the conditions on A’B’ may be expressed as

ψ ′ = G(x′, t), q ′ = 0, ψ ′t = F(x′, t), q ′t = 0. (37)

Note that in consequence of the assumed steady-state conditions, the perturbed slipline
field illustrated in Figure 2 remains unchanged with respect to the moving coordinate system
O’x′y′. Hence, in all the calculations presented hereafter, the perturbed slipline field may
be envisaged as being the same as that shown in Figure 2 with the coordinate system Oxy

changed to O’x′y′.
With the zeroth-order solutions given in (35), the first-order governing equations for stresses

are

cot(δ)
∂q ′

∂s0
α

+ 2q0∂ψ
′

∂s0
α

= 0,

cot(δ)
∂q ′

∂s0
β

− 2q0∂ψ
′

∂s0
β

= 0 in A’B’C’ and O’A’D’;

and

cot(δ)

[
sin(δ)

∂q ′

∂r
+ cos(δ)

r

∂q ′

∂θ

]
+ 2q0

[
sin(δ)

∂ψ ′

∂r
+ cos(δ)

r

∂ψ ′

∂θ

]
+2q ′

cos(δ)

r
= 0,

cot(δ)
∂q ′

∂r
− 2q0

[
∂ψ ′

∂r
+ 2

r
ψ ′
]
= 0 in A’C’D’.

(38)
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The equations for the first-order stress rates are

cot(δ)
∂q ′t
∂s0
α

+ 2q0∂ψ
′
t

∂s0
α

= 0,

cot(δ)
∂q ′t
∂s0
β

− 2q0∂ψ
′
t

∂s0
β

= 0 in A’B’C’ and O’A’D’;

and

cot(δ)

[
sin(δ)

∂q ′t
∂r
+ cos(δ)

r

∂q ′t
∂θ

]
+ 2q0

[
sin(δ)

∂ψ ′t
∂r
+ cos(δ)

r

∂ψ ′t
∂θ

]
+2q ′t

cos(δ)

r
= 0,

cot(δ)
∂q ′t
∂r
− 2q0

[
∂ψ ′t
∂r
+ 2

r
ψ ′t

]
= 0 in A’C’D’.

(39)

The first-order velocity field satisfy

∂v′α
∂s0
α

− ψ ′t tan(δ) = 0,
∂v′β
∂s0
β

+ ψ ′t tan(δ) = 0 in A’B’C’ and O’A’D’;

and

sin(δ)
∂v′α
∂r
+ cos(δ)

r

∂v′α
∂θ
− v′β

1

r
− ψ ′t tan(δ) = 0 in A’C’D’,

∂v′β
∂r
− v′α

sin(δ)

r
− ψ ′t tan(δ) = 0.

(40)

4.2.1. First-order stresses
Integrating the Equations (38)1,2 and applying the conditions (37)1,2 we obtain the solutions
for the first-order stresses at a pointP(s0

α, s
0
β) in region A’B’C’

q ′ = q0
I tan(δ) [G(x′S, t)−G(x′R, t)], ψ ′ = 1

2[G(x′S, t)+G(x′R, t)], (41)

with

x′S = a − 2s0
β cos

(
π

4
− δ

2

)
, x′R = a + 2s0

α cos

(
π

4
− δ

2

)
.

For simplicity, we approximate the profile of the traction free surface by

y′ = ε[lx′2+mx′ + n], (42)

with l,m andn being constant. Then the first-order stresses are

q ′ = −4 l q0
I tan(δ)(s0

β + s0
α) cos

(
π

4
− δ

2

)
,

ψ ′ = −2l (s0
β − s0

α) cos

(
π

4
− δ

2

)
+ 2la +m.

(43)
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Since the stresses must be continuous along the interface between the regions A’B’C’ and
A’C’D’, and the first-order stresses from the A’B’C’ side are linear functions ofr, we seek
solutions in the region A’C’D’ of the form

q ′ = L(θ)r +M(θ), ψ ′ = K(θ)r +N(θ).
It follows from (38)4 that

N(θ) = 0, L(θ) = 6 tan(δ)q0
II (θ)K(θ).

Equation (38)3 then yields

M(θ) = A′ exp[−2θ tan(δ)], K(θ) = B ′ exp[−θ tan(δ)],
where A’ and B’ are arbitrary constants. Thus the general solutions for the first-order stress
field in region A’C’D’ are

q ′ = 6B ′ tan(δ) q0
II (θ) exp[−θ tan(δ)]r + A′ exp[−2θ tan(δ)],

ψ ′ = B ′ exp[−θ tan(δ)]r.
To satisfy the continuity conditions of stressesq andψ along A’C’, we first need to find

the equation for this interfacialβ-line. To orderε, the differential equation for A’C’ is

r
dθ

dr
= εψ ′ = εB ′ exp[−θ tan(δ)]r;

this line is inclined to the traction free surface at angleπ/4− δ/2 at point A’, soθ → π/4+
δ/2+εG(a+)whenr → 0 withG(a+) = 2la+m.Hence the solution to the above differential
equation is given by

exp[θ tan(δ)] = εB ′r tan(δ)+ exp

[(
π

4
+ δ

2
+ εG(a+)

)
tan(δ)

]
,

or, to orderε,

θ = π

4
+ δ

2
+ εG(a+)+ εB ′r exp

[
−
(
π

4
+ δ

2

)
tan(δ)

]
.

Along this interface, we have from the side of region A’B’C’:s0
β = −r, s0

α = 0 and

q = q0 + εq ′ = q0
I
+ 4ε tan(δ)q0

I
cos

(
π

4
− δ

2

)
l r,

ψ = ψ0 + εψ ′ = π

2
+ ε

[
2l cos

(
π

4
− δ

2

)
r + 2l a +m

]
;

whereas from the side of region A’C’D’, we have

q = q0 + εq ′ = q0
I
+ 4εB ′ tan(δ)q0

I exp

[
−
(
π

4
+ δ

2

)
tan(δ)

]
r

+εA′ exp
[
−
(π

2
+ δ

)
tan(δ)

]
− 2εq0

I
tan(δ)G(a+),

ψ = ψ0 + εψ ′ = π

2
+ 2εB ′ exp

[
−
(
π

4
+ δ

2

)
tan(δ)

]
r + ε[2l a +m].



The frictionless rolling contact of a rigid circular cylinder245

Consequently, the continuity conditions lead to

A′ = 2[2l a +m]q0
I

tan(δ) exp

[
2

(
π

4
+ δ

2

)
tan(δ)

]
,

B ′ = l cos

(
π

4
− δ

2

)
exp

[(
π

4
+ δ

2

)
tan(δ)

]
,

(44)

and the first order stresses in region A’C’D’ are

q ′ = 6l q0
I

tan(δ) cos

(
π

4
− δ

2

)
exp

[
3

(
π

4
+ δ

2
− θ

)
tan(δ)

]
r

+ 2[2l a +m]q0
I

tan(δ) exp

[
2

(
π

4
+ δ

2
− θ

)
tan(δ)

]
,

ψ ′ = l cos

(
π

4
− δ

2

)
exp

[(
π

4
+ δ

2
− θ

)
tan(δ)

]
r.

(45)

The constantsl,m anda are to be determined when the velocity is found in the whole plastic
region.

In the region O’A’D’, the general solutions to the Equations (38)1,2 for the first-order
stresses are

q ′ = 1
2 tan(δ)[I (s0

β)+ J (s0
α)], ψ ′ = 1

4q0
I I I

[I (s0
β)− J (s0

α)],

whereI (s0
β) andJ (s0

α) are two arbitrary functions. The condition (36)1 on the contact surface
wheres0

β = s0
α +O(ε) yields

J (s0
α) = I (s0

α)− 16q0
I I I

cos

(
π

4
+ δ

2

)
s0
α

b
.

The continuity conditions on the interfacialβ-line A’D’ will determine the functionI (s0
α).

The equation for theβ-line A’D’ (inclined to the contact surface at angleπ/4+ δ/2) is, to
orderε,

θ = −
(
π

4
− δ

2

)
+ ε

{
2
a

b
+ B ′r exp

[(
π

4
− δ

2

)
tan(δ)

]}
.

After applying the continuity conditions, we find the first-order stresses in the region O’A’D’
to be

q ′ = 4B ′q0
III tan(δ) exp

[(
π

4
− δ

2

)
tan(δ)

]
(2rE − s0

α − s0
β)

− 8q0
III tan(δ)

1

b
cos

(
π

4
+ δ

2

)
s0
α + A′ exp

[
2

(
π

4
− δ

2

)
tan(δ)

]
,

ψ ′ = 2B ′ exp

[(
π

4
− δ

2

)
tan(δ)

]
(s0
α − s0

β)+
4

b
cos

(
π

4
+ δ

2

)
s0
α,

(46)



246 A. Tordesillas and J. Shi

whereA′ andB ′ are given in (44) andrE = a/[2 cos(π/4+ δ/2)].
4.2.2. First-order stress rates
Now we consider the first-order stress rate field. Based on Equation (42), we haveF(x′, t) =
0, soψ ′t = 0 on the free surface A’B’. The solutions to the Equations (39)1,2 in region A’B’C’
satisfying the conditions (36)3,4 are

ψ ′t = q ′t = 0. (47)

Sinceψ0
t = q0

t = 0 in the whole plastic region, the continuity of the stress rate combination
cot(δ)qt + 2qψt along the interfacialβ-lines A’C’ and A’D’ reduces to the continuity of
cot(δ)q ′t + 2q0ψ ′t . Along A’C’, this combination is zero from the side of the region A’B’C’.
To satisfy the continuity condition, we seek a solution for the first-order stress rates inside the
region A’C’D’ of form

q ′t = −2 tan(δ)q0
I I
ψ ′t .

Substituting this in the Equations (39)3,4, we obtain

ψ ′t =
P(θ)

r
, q ′t = −

2 tan(δ)q0
IIP (θ)

r
, (48)

whereP(θ) is an arbitrary function.
The general solutions to the Equations (39)1,2 for the stress rates in region O’A’D’ are

cot(δ)q ′t + 2q0
I I I
ψ ′t = Q(s0

β), cot(δ)q ′t − 2q0
I I I
ψ ′t = S(s0

α),

with two arbitray functionsQ(s0
β) andS(s0

α). The continuity of cot(δ)q ′t + 2q0ψ ′t along A’D’
leads toQ(s0

β) ≡ 0, and the condition (36)2 on the contact surface yieldsS(s0
α) = 8q0

I I I
u/b.

Thus we have the first-order stress rates in the region O’A’D’ as follows

ψ ′t = −
2u

b
, q ′t =

4 tan(δ) q0
I I I
u

b
. (49)

4.2.3. First-order velocity
For the velocity field we work through O’A’D’, A’C’D’ to A’B’C’. Sincev0

α = v0
β = 0 in the

whole plastic region, the continuity conditions for the velocity reduces to the continuity of the
first-order velocity. Therefore, along the boundingα-line O’D’C’B’, we must havev′β = 0
since the material outside the plastic region is stationary.

With ψ ′t given in (49)1, the general solutions to the Equations (40)1,2 for the first-order
velocity field are

v′α = −2
u

b
tan(δ)s0

α + Iv(s0
β), v′β = 2

u

b
tan(δ)s0

β + Jv(s0
α).

The conditionv′β = 0 on O’D’ (wheres0
β = 0) leads toJv(s0

α) ≡ 0. Then, applying the
condition (36)3 on the contact surface, we obtainIv(s0

β) = 4u sec(δ)s0
β/b, and therefore the

first-order velocity field in region O’A’D’ is

v′α = −2
u

b
[tan(δ)s0

α − 2sec(δ)s0
β], v′β = 2

u

b
tan(δ)s0

β. (50)
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Substitutingψ ′t = P(θ)/r in the Equations (40)3,4, we have the following governing
equations for the first-order velocity in the region A’C’D’

sin(δ)
∂v′α
∂r
+ cos(δ)

r

∂v′α
∂θ
− v′β

1

r
− 1

r
P (θ) tan(δ) = 0,

∂v′β
∂r
− v′α

sin(δ)

r
− 1

r
P (θ) tan(δ) = 0.

(51)

Forv′β = 0 on D’C’ wherer = rE exp[(π/4− δ/2+ θ) tan(δ)], we seek a partial solution
of the form

v′β = H(θ)
{
r − rE exp

[(
π

4
− δ

2
+ θ

)
tan(δ)

]}
,

with H(θ) being arbitrary. Then Equation (50)2 requires

v′α = cosec(δ)H(θ)r − sec(δ)P (θ).

The general solutions forH(θ) andP(θ) which satisfy Equation (50)1 are

H(θ) = H0,

P (θ) = P0 exp[−θ tan(δ)] + 1
2H0rE cot(δ) exp

[(
π

4
− δ

2
+ θ

)
tan(δ)

]
,

whereH0 andP0 are arbitrary constants. The continuity ofv′α along A’D’ leads to

H0 = −4u tan(δ)

b
, P0 = −2urE[1− sin(δ)] exp

[− (π4 − δ
2

)
tan(δ)

]
b

.

Hence we have the velocity components in region A’C’D’

v′α = −4
u

b
sec(δ) r + 2

u

b
rE sec(δ)

{
[1− sin(δ)] exp

[
−
(
π

4
− δ

2
+ θ

)
tan(δ)

]
+exp

[(
π

4
− δ

2
+ θ

)
tan(δ)

]}
,

v′β = −4
u

b
tan(δ)

{
r − rE exp

[(
π

4
− δ

2
+ θ

)
tan(δ)

]}
.

(52)

In the region A’B’C’, the first-order stress rates vanish. So the general solutions to Equa-
tions (40)1,2 are

v′α = F ∗(s0
β), v′β = G∗(s0

α),

with F ∗(s0
β) andG∗(s0

α) arbitrary. Applying the conditionv′β = 0 on C’B’ and the condition
of continuity ofv′α across theβ-line A’C’, we obtain the first-order velocity components in
this region

v′α = 4
u

b
sec(δ)s0

β + 2
u

b
rE sec(δ)V̄ , v′β = 0, (53)
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with

V̄ = exp
[π

2
tan(δ)

]
+ [1− sin(δ)] exp

[
−π

2
tan(δ)

]
.

5. Results and discussion

Relative to the coordinate system O’x′y′, the free-surface profile remains unchanged, hence
the relative movement of particles is directed along this surface. Accordingly, the slope of the
free-surface profile may be expressed as follows

dy′

dx′
= vy ′

vx ′ − u = −ε
v′y ′

u− εv′x ′
= −ε v

′
y ′

u
+O(ε2), (54)

where

v′y ′ = v′α sin

(
π

4
− δ

2

)
= 2

u

b
sec(δ)

[
tan

(
π

4
− δ

2

)
(a − x′)+ sin

(
π

4
− δ

2

)
rEV̄

]
.

Substituting this in (54), integrating it and making use of the condition thaty′ = εa2/b when
x′ = a, we obtain the expression for the profile of the traction free surface, to orderε, as
follows

y′ = ε1

b
sec(δ) tan

(
π

4
− δ

2

){
x′2− 2

[
a + rEV̄ cos

(
π

4
− δ

2

)]
x′ +N0

}
, (55)

where

N0 = a2

{
1+ cot

(
π

4
− δ

2

)
[V̄ + cos(δ)]

}
.

By comparing the two expressions in (42) and (55) for the free surface, we get

l = 1

b
sec(δ) tan

(
π

4
− δ

2

)
, m = −1

b
sec(δ)

[
2 tan

(
π

4
− δ

2

)
+ V̄

]
a. (56)

Substituting these in (44), and combining the results with (46)1 and (30)1, we obtain the
following expression for the normal pressure−σn on the contact surface

−σn = −(σ 0
n + εσ ′n)

= c cot(δ)[Q0− 1] + 2

b
εcQ0{2Q1(a − x′)− 2x′ − sec(δ)V̄ a}, (57)

with

Q0 = 1+ sin(δ)

1− sin(δ)
exp[π tan(δ)], Q1 = sec(δ) exp

[π
2

tan(δ)
]
.
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Denoting the vertical load byW and the rolling resistance byF (the minimum value
required for the translatory force to cause forward movement of the cylinder), we have

W = −
∫ sa

0
σn ds cos(λ) = −

∫ a

0
σn dx′,

F = −
∫ sa

0
σn ds sin(λ) = −

∫ a

0
σn tan(λ)dx′,

(58)

wheresa is the arc length of the contact surface andλ is the angle between the contact surface
and thex′ axis. Substituting (57) in (58)1 and integrating, we get

W = c cot(δ)[Q0− 1]a + 2ε c Q0{Q1− 1− sec(δ)V̄ }a2

b
.

According to the definition ofε = a/R andb = 2Rε = 2a, this equation can be expressed as

W = c cot(δ)[Q0− 1]a + cQ0{Q1− 1− sec(δ)V̄ }a2

R
. (59)

For a given vertical loadW , the contact widtha may then be determined from this equation.
With the approximation ofy′ = x′2/2R, tan(λ) = x′/R, the rolling resistanceF is obtained
by integrating (58)2 as follows

F = 1
2c cot(δ)[Q0− 1]a

2

R
+ 1

3c Q0{Q1− 2− 3
2 sec(δ)V̄ } a

3

R2
. (60)

Once the contact widtha is established, (60) can be used to calculate the rolling resistance. In
addition, withb = 2a, the profile of traction free surface is given by (55).

The passage of the cylinder leads to a permanent horizontal displacement1 on the surface
of the granular material in the direction of motion of the cylinder, namely

1 =
∫ ηa

0 vx ′ dx′

u
= ε

∫ ηa
0 v′x ′ dx

′

u
, (61)

where

ηa =
{

1+ tan

(
π

4
+ δ

2

)
exp

[π
2

tan(δ)
]}
a (62)

is the length of O’B. Substituting the corresponding expressions forv′x ′ for the contact and
free surfaces in the above, we find that

1 = a2

2R
sec(δ)

{
1+ [1− sin(δ)] tan2

(
π

4
+ δ

2

)}
. (63)

Because of the steady-state and incompressibility conditions assumed for the fully developed
flow regime, the surface levels of the material both ahead and behind the rolling cylinder are
the same. Therefore, the permanent vertical displacements which are considered to occur at the
initial stages of loading are outside the scope of this model (recall that the difference between
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Figure 3. Contact widtha/R as a function of vertical loadW/cR for various values of internal friction angleδ.
Note that the horizontal dashed line indicates the upper limit of the range of validity:ε(= a/R) < 0·1 (e.g., for
δ = 30◦, range of validity lies in 06 W/cR < 2·7871)

the initial stages of loading and the fully developed flow regime is illustrated in Figure 1).
Moreover, in consequence of the steady-state condition, the contact width, the volume of
bulldozed material, and the free-surface profile are independent of the speed of the cylinder.

In the following, we summarise some trends which arise from changes in material property
via the parameterδ. Figures 3, 4 and 5 present, respectively, the variations of the contact width
a/R, permanent horizontal displacement1/R, and coefficient of rolling resistanceF/W ,
with the vertical loadW for several values of internal friction angle of the materialδ. Bearing
in mind that the perturbation approximation is generally applicable whenε = a/R � 1·0
(e.g., ε < 0·1), Figure 3 indicates that both the range of validity and the accuracy of the
perturbation solutions increase with increasingδ. For a fixed loadW , Figure 3 shows a de-
crease in the contact width with increasingδ. Under these conditions, one finds a concomitant
decrease in the overall plastic region based on consideration of the location of the perturbed
boundingα-line OD’C’B’ which may be defined as follows

Figure 4. Permanent surface displacement1/R as a

function of vertical loadW/cR for various values of

internal friction angleδ.

Figure 5. Coefficient of rolling resistanceF/W as a

function of vertical loadW/cR for various values of

internal friction angleδ.
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Table 1. Perturbed and zeroth-order solutions: the maximum horizontal extent of the slipline field (columns 3–4) and
the contact pressures (columns 5–7) for varying values of internal friction angleδ for W/cR = 0·4.

δ a/R (lengthO′B ′)/R (lengthO′B)/R −σ0
n /c −(σ0

n + εσ ′n)/c −(εσ ′n)/σ0
n

0 0·08026873 0·1544146851 0·1605954924 5·14390617 4·98326062 0·03123026387

10 0·04910154 0·1210818308 0·1419629656 8·34492612 8·14638326 0·02379204586

20 0·02741621 0·09287495284 0·1179176264 14·8347117 14·5899098 0·01650196807

30 0·01340689 0·06830379235 0·0907148111 30·1396278 29·8354152 0·01009344349

40 0·00533848 0·04658427028 0·0627183123 75·3131142 74·9276362 0·00511833900

50 0·00150164 0·02761509285 0·0365851105 266·881763 266·375832 0·00189571214

y′ = − tan

(
π

4
+ δ

2

)
x′ + 2+ sec(δ) exp

[
π
2 tan(δ)

]
2R cos2

(
π
4 + δ

2

) x′2 for OD’,

r = rD′ exp
{
(θ − θD′) tan

[
δ − a

4R
sec(δ) exp

(π
2

tan(δ)
)]}

for D’C’ ,

y′ = (x′ − x′C ′) tan

(
π

4
− δ

2

)
+ sec(δ)

2R

tan
(
π
4 − δ

2

)
cos2

(
π
4 − δ

2

) (x′2− x′2C ′)
− a sec(δ)

2R

2 tan
(
π
4 − δ

2

)+ V̄
cos2

(
π
4 − δ

2

) (x′ − x′C ′)+ y′C ′ for C’B’ ,

(64)

where the polar coordinate system (r, θ) with

x′ = a + r sin(θ), y′ = a2

2R
− r cos(θ)

is used in the description of D’C’, while (rD′ , θD′) and (x′
C ′, y

′
C ′) represent the location of the

points D’ and C’, respectively (see Figure 2). The decrease in the overall extent of the slipline
region with increasingδ is evident in the values of the length of O’B’ (i.e., the maximum
horizontal extent of the perturbed slipline field) as listed in column 3 of Table 1 forW/cR =
0·4.

Comparisons between the zeroth-order and the perturbed solutions may be made for the
overall dimensions of the slipline field and the contact pressures. It is evident from the values
of O’B in column 4 of Table 1 that the curvature of the cylinder effectively reduces the slipline
field; indeed an examination of the boundingα-lines O’D’C’B’ (Equation (64)) and the inter-
facial β-lines A’D’ and A’C’ (in Section 4.2.1) indicates that the greater the cylinder’s radius
of curvature (i.e.the smaller the cylinder radiusR), the smaller the overall slipline field will be.
The zero-order contact pressure (constant), and the mean of the contact pressure distribution
to first order (linear with respect tox in Equation (57)) are given in columns 5 and 6 of Table 1.
It can be seen from column 7 that for a fixed load, the relative difference between the zero-
order contact pressure and the first-order mean contact pressure decreases with increasingδ.
This trend is consistent with Figure 3 in which, for a fixed load, the perturbation parameter
ε(= a/R) decreases with increasingδ.

Finally, we note that the formulation in this paper is not suitable for purely frictional ma-
terials,i.e. c = 0; this is conveyed in Equations (57)–(60) which show that the stresses in the
material vanish for the casec = 0. On the other hand, in the limitδ → 0, which corresponds
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to purely cohesive materials, the expressions for the contact pressure, the forcesF andW , and
the permanent horizontal displacement tend to those values given in Marshall [6] for Tresca
or von-Mises materials. Although a comparison with experimental data is required to assess
the validity of this model properly, the above results do show sensible trends which lend merit
to the future extension of this work to the case of frictional contact.
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